TA的每日心情 | 擦汗 2025-1-19 12:30 |
---|
签到天数: 755 天 [LV.10]以坛为家III
小白
- 积分
- 0
|
Table of Contents
Preface xiii
Glossary of Symbols and Notation xv
1 Introduction, Terminology, and Scales 1
1.1 General Introduction 1
1.2 Photon Energies 2
1.3 Photon-Energy Conversion Equations 3
1.4 Naming Convention 4
1.5 The Spectral Line 5
1.6 General Rule of Optical Transfer 5
1.7 Definitions 6
1.7.1 Exponential functions and signal damping (attenuation) 6
1.7.2 Low-pass filter functions 8
1.7.2.1 A note on the dB interpretation 9
1.7.3 Definition of bandwidth in electric versus optical
spectroscopy systems 10
1.8 Spectral Distribution of Thermal Radiation by Planck’s Law 10
1.9 Keeping Optics Clean 11
References 11
2 Spectrometer Concepts 13
2.1 Basic Principle of an Optical Spectrometer 13
2.1.1 Attributes of modular spectrometers 14
2.2 Basic Grating Parameters and Functions 15
2.2.1 The free spectral range 16
2.2.2 Dispersion of gratings and prisms 16
2.3 Existing Basic-Spectrometer Concepts 17
2.3.1 The Littrow configuration 17
2.3.2 Ebert–Fastie configuration 20
2.3.2.1 Origin of astigmatism 23
2.3.3 Czerny–Turner configuration 23
2.4 Impacts and Distortions to Spectrometers 24
2.4.1 The influence of the internal angles on the wavelength 25
2.5 Other Spectrometers, Including Those for the Vacuum Range 25
2.8.2 Band-pass filters and prism 64
2.8.3 Short-pass filters 65
2.8.4 General filtering techniques 66
2.8.5 Notch filters 66
2.9 General Collection of Performance Parameters of Spectrometers 66
Reference 67
3 The Dispersion Elements: Diffraction Grating and Refraction Prism 69
3.1 Introduction 69
3.2 Diffraction Efficiencies and Polarization of Standard Gratings 69
3.3 Types of Dispersers 71
3.3.1 Holographic gratings 71
3.3.2 Echelle gratings 72
3.3.3 Concave and other curved gratings 73
3.3.4 Transmission gratings 73
3.4 The Prism 73
3.5 The Grism 75
3.6 Other Features of Diffraction Gratings 77
3.6.1 Polarization anomaly 77
3.6.2 Polarization of Echelle gratings 78
3.6.3 Scattering effects 79
3.6.4 Grating ghosts 79
3.6.5 Shadowing and diffusion 80
3.6.6 Surface coating 80
References 81
4 Design Considerations of Monochromator and Spectrograph Systems 83
4.1 Beam Travel inside a Spectrometer 83
4.1.1 Beam travel in a symmetric spectrometer 85
4.1.2 Variations of the basic Ebert–Fastie and
Czerny–Turner concepts 87
4.1.3 Output wavelength as a function of the source position 88
4.1.4 Local output dispersion as a function of the lateral
position in the field output 89
4.1.5 Output dispersion and fidelity as a function of the
tilt angle of the field output 90
4.1.6 Correction methods for spectral imaging 92
4.1.6.1 External imaging correction 92
4.1.6.2 Internal imaging correction by toroidal mirrors 93
4.1.6.3 Internal imaging correction by a curved grating 94
4.1.6.4 Internal imaging correction by a Schmidt corrector 94
4.1.7 Prism spectrometer 95
4.1.8 Dispersion of a prism spectrometer 96
4.1.9 Echelle grating spectrometers 99
4.1.10 Transmission spectrometers 99
4.2 Grating Rotation and Actuation 100
4.2.1 Classical driving system 101
4.2.2 Grating actuation by a rotating system 102
4.3 Multiple-Stage Spectrometers 105
4.3.1 Double-pass spectrometers 106
4.3.2 Double spectrometers 107
4.3.2.1 Subtractive spectrometers 108
4.3.2.2 Efficiency behavior and analysis 110
4.3.2.3 Energy transmission and bandwidth of single-,
double-, and triple-stage spectrometers 110
4.3.2.4 Effects of photon traveling time (time of flight) 111
4.3.3 Construction considerations for double spectrometers 112
4.3.3.1 Additive setup 112
4.3.3.2 Subtractive setup 113
4.3.3.3 Modern off-axis double spectrometers 114
4.3.3.4 Mechanical filtering in double spectrometers 118
4.3.4 Various configurations of flexible double spectrometers 118
4.3.5 General performance data of double spectrometers
versus similar single-stage systems 119
4.3.6 Triple-stage spectrometers 120
4.4 Echelle Spectrometers 122
4.4.1 Echelle monochromators and 1D spectrographs 123
4.4.2 High-resolution Echelle spectrometer designed as
a monochromator and 1D spectrograph 124
4.4.2.1 Echelle aberrations 127
4.4.2.2 Thermal drift assuming an aluminum chassis 127
4.4.3 Two-dimensional Echelle spectrometer for the parallel
recovery of wide wavelength ranges at high resolution 128
4.4.3.1 Concept of a compact 2D Echelle 131
4.4.3.2 Comparison of an Ebert–Fastie and a folded
Czerny–Turner 133
4.4.3.3 Constructive precautions 136
4.5 Hyperspectral Imaging 137
4.5.1 Internal references 137
4.5.2 Example of hyperspectral imaging 137
4.5.2.1 Image reproduction and spectral recovery 139
4.5.2.2 Overlaid hyperspectral image recovery 139
4.5.2.3 Separated hyperspectral image recording 140
4.5.2.4 Hyperspectral imaging supported by filters 140
4.5.3 General design for hyperspectral imaging 141
4.5.3.1 Design considerations 141
References 142
5 Detectors for Optical Spectroscopy 143
5.1 Introduction 143
5.1.1 Work and power of light signals 143
5.1.2 Basic parameters of detectors 143
5.1.2.1 Pre-amplifier considerations and wiring 144
5.1.2.2 General signals and sources of noise in optical
detector systems 145
5.1.3 Detection limit, noise, and SNR 146
5.1.4 Detection limit, noise, and SNR in absolute measurements 146
5.1.5 Detection limit, noise, and SNR in relative measurements 147
5.2 Single-Point Detectors 147
5.2.1 Phototubes 147
5.2.2 Comments on the interpretation of PMT data sheets 150
5.2.3 A sample calculation for PMTs, valid for an integration
time of 1 s 150
5.2.4 Photon counter 150
5.2.5 UV PMTs and scintillators 151
5.3 Illumination of Detectors, Combined with Image Conversion 152
5.4 Channeltron® and Microchannel Plate 153
5.5 Intensified PMT and Single-Photon Counting 157
5.6 Solid State Detectors 157
5.6.1 General effect of cooling 159
5.6.2 Planck’s radiation equals blackbody radiation 159
5.6.3 Detectors and the ambient temperature 160
5.6.3.1 Signal modulation and synchronized detection 162
5.6.3.2 Estimation of the modulated measurement 168
5.6.4 Tandem detectors 169
5.6.5 Typical parameters of solid state detectors,
and their interpretation 170
5.7 Design Considerations of Solid State Detectors 171
5.7.1 Illumination of small detector elements 171
5.7.2 Charge storage in semiconductor elements, thermal
recombination, and holding time 171
5.7.3 PIN and avalanche diodes 172
5.7.4 Detector coupling by fiber optics 172
5.8 Area Detectors: CCDs and Arrays 173
5.8.1 Mounting of area detectors, the resulting disturbance,
and the distribution of wavelengths 173
5.8.1.1 Popular versions of area detectors 174
5.8.2 Basic parameters of arrays and CCDs with
and without cooling 175
5.8.2.1 Pixel size, capacity, sources of noise, dynamic
range, shift times, read-out time, and ADC
conversion time 176
5.8.2.2 Applicability of CCDs for spectroscopy, image
processing, and photography 178
5.8.3 Signal transfer and read-out 178
5.8.3.1 Combining the read-out in imaging mode and the
display in spectroscopy mode 181
5.8.4 CCD architectures 181
5.8.5 CCD and array efficiency 183
5.8.5.1 Front-illuminated CCDs 183
5.8.5.2 Rear-side-illuminated CCDs 183
5.8.5.3 Interference of rear-side-illuminated CCDs:
Etaloning 186
5.8.6 Time control: synchronization, shutter, and gating 187
5.8.6.1 Shutter control 187
5.8.6.2 Microchannel-plate image intensifiers 188
5.8.7 Current formats of area detectors 188
5.8.8 Read-out techniques: Multi-spectra spectroscopy,
binning, and virtual CCD partition 189
5.8.8.1 Virtual CCD programming 192
5.8.9 CCDs and array systems with image intensification 193
5.8.9.1 CCDs with on-chip multiplication or electron
multiplication (EMCCD) 193
5.8.9.2 CCDs with an additional microchannel-plate
image intensifier (MCP-CCD) 194
5.8.10 Data acquisition in the ms–ms time frame 195
5.8.10.1 Kinetic measurements 195
5.8.10.2 Double-pulse measurements 197
5.8.11 Extending the spectral efficiency into the deep UV 198
5.8.12 NIR and IR area detectors 198
5.9 Other Area Detectors 200
5.9.1 CID and CMOS arrays 200
5.9.1.1 Typical CMOS parameters, and comparison
to CCDs 200
5.9.2 Position-sensitive detector plate 203
5.9.3 Streak and framing camera 203
References 205
6 Illumination of Spectrometers and Samples: Light Sources,Transfer Systems, and Fiber Optics 207
6.1 Introduction and Representation of Symbols 207
6.2 Radiometric Parameters 208
6.3 Advantage of Using V and sr 210
6.4 Different Types of Radiation and Their Collection 210
6.4.1 Laser radiation 210
6.4.2 Cone-shaped radiation 213
6.4.3 Ball-shaped radiation from point sources: Lamps 215
6.4.3.1 Thermal filament lamps 216
6.4.3.2 Arc discharge lamps 216
6.4.3.3 Spectra of the various lamp types 217
6.4.3.4 Light collection and transfer into a spectrometer 218
6.4.4 Diffuse radiation collected by integrating spheres 219
6.4.4.1 Collecting lamp radiation 222
6.4.4.2 Approaching the parameters of a sphere 222
6.4.5 NIR radiation 224
6.4.6 IR radiators 225
6.5 Examples of Optimizing Spectrometer Systems 227
6.5.1 Optimization of gratings 227
6.5.2 Change-over wavelengths of lamps, gratings, and detectors 228
6.6 End Result of an Illumination Monochromator System 230
6.7 Light Transfer and Coupling by Fiber Optics 231
6.7.1 Fiber guides, light-wave guides, and fiber optics 231
6.7.2 Fiber optics for the UV–Vis–NIR range 232
6.7.3 Fiber optic parameters and effects 233
6.7.4 “Flexible optical bench,” and a precaution about its handling 236
6.7.5 Typical kinds and variations of single fibers and fiber cables 236
6.7.5.1 Basic versions 236
6.8 Transfer Systems 239
6.8.1 Coupling by bare optical fibers 239
6.8.2 Coupling by lens systems 240
6.8.3 Coupling by mirror systems 242
References 243
7 Calibration of Spectrometers 245
7.1 Calibration of the Axis of Dispersion, Wavelength,
and Photon Energy 245
7.1.1 Parameters that define the angular position of a dispersion
element 245
7.1.2 Driving a grating or prism spectrometer 245
7.1.2.1 Grating spectrometers with a sine-functional drive 246
7.1.2.2 Calibrating a scanning system with a sine drive 247
7.1.2.3 First calibration of a sine-driven system 247
7.1.2.4 Parameters that can degrade the linearity 248
7.1.2.5 Timing calibration checks and recalibration 248
7.1.2.6 Recalibration requirements 249
7.1.3 Grating spectrometers with a rotary drive 249
7.1.4 Calibration of the field output 251
7.1.4.1 Output dispersion as a function of the lateral
position in the field output 252
7.2 Calibrating the Axis of Intensity, Signal, and Illumination 253
7.2.1 Requirements for a useful calibration and portability
of data 253
7.2.2 Light sources for radiometric calibration 253
7.2.3 Procedures to produce reliable calibrated data 254
7.3 Transfer Efficiency of Spectrometers 256
7.3.1 General behavior 256
7.3.2 Measurement of transfer efficiency 256
References 258
8 Stray and False Light: Origin, Impact, and Analysis 259
8.1 Origin of Stray Light 259
8.2 Impact of Stray Light 261
8.2.1 Disturbance in the application of discrete spectral signals 261
8.2.2 Disturbance in the application of broadband spectral
signals 263
8.3 Analysis and Quantization of Stray Light in Spectrometers
and Spectrophotometers 264
8.4 Minimizing the Impact of Disturbance through Optimization 266
8.5 Reducing Stray Light 267
References 268
9 Related Techniques 269
9.1 Compact, Fiber-Optic-Coupled Spectrographs 269
9.2 Programmable Gratings 272
9.3 Bragg Gratings and Filters 272
9.4 Hadamard Spectrometer 273
9.4.1 Principle of Hadamard measurements 274
9.4.2 Hadamard setups 274
References 275
Index 277
|
|